
Peng et al. Cost Eff Resour Alloc           (2021) 19:61  
https://doi.org/10.1186/s12962-021-00314-3

RESEARCH

Can integrated care improve the efficiency 
of hospitals? Research based on 200 Hospitals 
in China
Zixuan Peng1, Li Zhu2*, Guangsheng Wan3 and Peter C. Coyte1 

Abstract 

Background: The shift towards integrated care (IC) represents a global trend towards more comprehensive and 
coordinated systems of care, particularly for vulnerable populations, such as the elderly. When health systems face 
fiscal constraints, integrated care has been advanced as a potential solution by simultaneously improving health 
service effectiveness and efficiency. This paper addresses the latter. There are three study objectives: first, to compare 
efficiency differences between IC and non-IC hospitals in China; second, to examine variations in efficiency among 
different types of IC hospitals; and finally, to explore whether the implementation of IC impacts hospital efficiency.

Methods: This study uses Data Envelopment Analysis (DEA) to calculate efficiency scores among a sample of 200 
hospitals in H Province, China. Tobit regression analysis was performed to explore the influence of IC implementation 
on hospital efficiency scores after adjustment for potential confounding. Moreover, the association between various 
input and output variables and the implementation of IC was investigated using regression techniques.

Results: The study has four principal findings: first, IC hospitals, on average, are shown to be more efficient than non-
IC hospitals after adjustment for covariates. Holding output constant, IC hospitals are shown to reduce their current 
input mix by 12% and 4% to achieve optimal efficiency under constant and variable returns-to-scale, respectively, 
while non-IC hospitals have to reduce their input mix by 26 and 20% to achieve the same level of efficiency; second, 
with respect to the efficiency of each type of IC, we show that higher efficiency scores are achieved by administrative 
and virtual IC models over a contractual IC model; third, we demonstrate that IC influences hospitals efficiency by 
impacting various input and output variables, such as length of stay, inpatient admissions, and staffing; fourth, while 
bed density per nurse was positively associated with hospital efficiency, the opposite was shown for bed density per 
physician.

Conclusions: IC has the potential to promote hospital efficiency by influencing an array of input and output vari-
ables. Policies designed to facilitate the implementation of IC in hospitals need to be cognizant of the complex way IC 
impacts hospital efficiency.
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Background
China, like many other countries, is facing both a greying 
of the population and an increased prevalence of chronic, 
non-communicable diseases. Those over 65 years of age 
represented 11.9% of the population in 2018 but are 
expected to account for 20% by 2040 [1, 2]. Likewise, 
the prevalence of chronic, non-communicable disease 
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(NCD) among those over 65  years of age was 65% in 
2008 and increased to 75% by 2018 [3, 4]. Older people 
with chronic diseases usually suffer from problems in 
the physical, psychological and social domains [5], and 
have diverse and complex needs in the areas of preven-
tion, treatment, etc. [6]. As people age, the risk of chronic 
conditions increases, and this is estimated to increase the 
national burden of NCDs in China to 40% by 2030 [7]. 
Under the twin pressures of ageing and a high prevalence 
of chronic diseases, integrated care has been proposed as 
a potential solution for China. IC encompasses various 
methods of funding, organization and delivery of care to 
enhance system efficiency [6, 8–10]. Health systems real-
ize their goals at all levels through enhanced hospital per-
formance [11]. This is especially the case in China where 
hospitals may benefit most from IC through the provi-
sion of comprehensive and coordinated care. As shown 
in Fig. 1, Chinese hospitals cooperate with other institu-
tions to achieve vertical and horizontal integration [12].

Efficiency studies contribute to informed decision-
making as the findings from such studies may identify 
opportunities to improve care performance in hospitals 
and at the same time contain resource consumption [13]. 
However, studies have seldom looked at the impact of 
IC on hospital efficiency. Most studies have focused on 
measuring health outcomes among the elderly that may 
be attributed to the implementation of IC [14–24]. Fur-
thermore, it remains unclear from that literature the 
direction of effect, if any, of IC on hospital efficiency. 
Some studies demonstrated that integrated partnerships 
and a coordinated continuum of services dedicated to the 
treatment of specialized diseases or a defined population 

may improve hospital efficiency [25–29]. However, weak 
and, on occasions, negative impacts of IC on hospital 
efficiency were also found [30, 31]. As such, there is an 
opportunity to add to the literature by directly assessing 
the impact of IC on hospital efficiency.

The purpose of this paper is three-fold: first, to inves-
tigate potential differences in efficiency between IC 
hospitals and non-IC hospitals; second, to examine vari-
ations in efficiency among different types of IC hospitals; 
and third, to explore whether the implementation of IC 
impacts hospitals efficiency. The paper is structured in 
the following manner: In “Methods” section, we explain 
data sources, variables and the methods of analysis. The 
results are outlined in “Results” section and discussed in 
“Discussion” section. We end with a brief conclusion that 
highlights several policy implications.

Methods
Data sources
Our study chose C city as the sample for three reasons: 
first, C city is among the first batch of cities to implement 
IC in China. According to the “Notice Regarding the 
Determination of the First Batch of National-level Pilot 
Cities of Integrated Care” [32], C city is among the first 
of two cities to implement IC in H province. Pilot cities 
provide financial and administrative support and hospi-
tals participated on a voluntary basis. Second, C city is 
in central China and is representative of all China in hav-
ing average economic and social development. Finally, 
the city was selected for reasons of data accessibility. 
Specifically, the data were obtained directly from the 
Provincial Bureau of Statistics that links a wide range of 
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Fig. 1 Integration of health-care institutions in China. The author visualized the structure of IC in China based on a policy review. IC in China 
includes: (1) Vertical integration among different types of healthcare institutions or aged-care institutions; (2) Horizontal integration among the 
healthcare institutions and aged-care institutions
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administrative databases to hospital-level data. We used 
a dataset which was formally collected by the Provincial 
Bureau of Statistics in 2016 and all the hospitals in C city 
reported their data according to the requirements of the 
government. To ensure  maximum  representativeness, 
all hospitals in C city were included in our research. The 
dataset used contains information on personnel, equip-
ment, cost and revenue data for each of 200 hospitals in 
C city, H province in 2016.

Study variables
Hospital efficiency was the outcome of our study. In 
economic theory, average productivity is calculated as 
a ratio of outputs to inputs. Applications of efficiency 
measurement have extended this concept by using 
these ratios to construct “best practice” frontiers. In 
most cases, inputs to the production function of health 
services include capital (e.g., medical equipment, hos-
pital beds, etc.), labor (e.g., human resources), land 
and raw materials. Outputs include health services 
provided (e.g., number of surgeries performed) [33]. 
Guided by our literature review on efficiency analy-
sis [13, 34–39], we included as many input and output 
variables as possible. Specifically, Output variables 
included length of stay, inpatient admissions, outpa-
tient visits, emergency visits, family visits, revenues, 
number of surgeries, and number of discharges from 
hospital. Input variables comprised operating cost, 
number of physicians, number of ancillary medical 
staff, number of nurses, number of other staff (includ-
ing administrative, technical and logistic staff ) as well 
as number of hospital beds.

In 2016, C city started to implement IC policy and 
hospitals could voluntarily decide whether to par-
ticipate. Our research included the implementation of 
IC as a dummy independent variable and tests to see 
if it was positively association with hospital efficiency 
[29]. Additional control variables were also considered 
in our analysis. The increasing complexity of health-
care and resulting clinical specialization may result in 
the fragmentation of healthcare, thereby compromis-
ing patient safety and hospital efficiency [40]. In our 
research, we used the number of key clinical depart-
ments as a proxy for clinical specialization and we 
expected that it would be negatively correlated with 
hospital efficiency. Moreover, facility type was also 
found to be a useful predictor of hospital efficiency 

whereby facilities operating at a large scale may realize 
greater technical efficiency due to increasing returns 
to scale [30]. Third, a higher mortality rate (low qual-
ity health services) was found to raise the costs of the 
hospitals [34] and thereby to erode hospital efficiency. 
Fourth, shorter average length of stay was expected to 
improve the use of medical beds and enhance efficiency 
[41]. Fifth, we also included bed density per physician 
and bed density per nurse as control variables, because 
we expected these variables to be positively associated 
with hospital efficiency [13].

Statistical analysis
Data envelope analysis method
Non-parametric Data Envelopment Analysis and para-
metric Stochastic Frontier Analysis are the two main 
approaches to the measurement of efficiency. We 
employed DEA because of its ease of implementation, 
its nonparametric basis and substantial freedom on the 
specification of inputs and outputs [42]. As shown in 
Eq.  (1), the efficiency score θ for a hospital i is meas-
ured relative to the efficiency of the other hospitals 
(i = 1,…,n), subject to the restriction that all hospitals 
are on or below the efficient production frontier [43]. 
The value of each hospital’s measure of efficiency ranges 
from 0 to 1. Efficient hospitals are those on the efficient 
frontier and their efficiency score is 1, while inefficient 
hospitals lie below the efficiency frontier and their effi-
ciency score is less than 1. The further theses inefficient 
hospitals are away from the efficiency frontier, the lower 
is their efficiency score. In this paper, we adopted an 
input-oriented DEA model that focuses on minimiz-
ing the use of inputs in order to produce a given out-
put [13]. Furthermore, variable returns to scale (VRS) 
was considered by our study based on two considera-
tions: (1) in most cases, hospitals have varying sizes 
and this is factor that determines their efficiency [44]; 
and (2) public hospitals in China were not only natural 
monopolies but also administrative monopolies [45]. To 
investigate the efficiency differences among different 
types of IC, IC was classified into contractual, admin-
istrative, insurance-driven and virtual integration by 
our previously published study [46]. The contractual, 
administrative and virtual integration types were found 
in our research. The definition, core strategy, strengths 
and weaknesses of each IC type were summarized in 
Table 1.

(1)ψ̂DEA = {(x, y) ∈ R
p+q
+ |y ≤

n
∑

i=1

θiYi, x ≥

n
∑

i=1

θiXi, for (θ1, · · · θn) S.t.

n
∑

i=1

θi = 1; θi ≥ 0, i = 1, · · · , n}
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Tobit regression
The efficiency score is the outcome of interest. This 
dependent variable is limited in its range with values that 
lie within the unit interval, i.e., between 0 and 1. To ease 
interpretation, the efficiency scores were transformed to 
represent inefficiency scores using the transformation in 
Eq.  (2) [13]. After transformation, the inefficiency score 
for efficient hospitals is 0, while inefficient hospitals have 
inefficiency scores that exceed 0. Given the value of the 
dependent variable is censored at zero, Tobit regres-
sion was used in our study. In our research, inefficiency 
is measured by a set of input and output variables. To 
further explore how IC influences the inefficiency score 
through these input/output variables, we regressed each 
input and output variable on the dummy IC variable.

Propensity score matching
The causal effects of IC on hospitals efficiency cannot 
be estimated using ordinary regression due to potential 
selection bias associated with confounding variables. 
Propensity score matching (PSM) was used to reduce 
such potential bias associated with confounding vari-
ables in the decision to implement IC, and PSM is use-
ful to identify potential causal effects of IC on hospital 
efficiency. Following the analytical process of Staffa [47], 
Garrido [48], Caliendo [49] and Austin [50], we per-
formed PSM in three steps: first, we calculated the prob-
ability of implementing IC given the observed covariates 
using logistic regression analysis. The covariates included 
were those that were expected to be related to both the 
implementation of IC and were expected to be important 
determinants of hospital inefficiency [48]. These variables 
included hospital type, inpatient mortality rate, hospital 
capacity, average length of stay for discharged patients, 
bed density per physician, and bed density per nurse. 
Second, we employed the K-nearest neighbor matching 
method with a matching ration 1:1 and a caliper value 
of 20% of the standard deviation of the logit of the esti-
mated propensity score [51]. Finally, balance diagnostics 
of the matching results were undertaken through use of 
a chi-square test (for categorical variables) and two sam-
ple t-test (for continuous variables). We set 0.20 as the 
threshold of the required standard deviation, given the 
size of the sample used in our study [48, 52–54].

Sensitivity analyses
To check the robustness of our research results, we con-
ducted the following sensitivity analyses: first, we con-
ducted direct ordinary least squares regression analysis 

(2)Inefficiency score =

(

1

Efficiency score
− 1

)

to investigate the difference associated with different 
estimation methods; second, we performed Tobit regres-
sion using all the sample hospitals. This allowed us to 
compare the results with PSM and without PSM; third, 
we used constant returns to scale (CRS) to provide com-
parisons and test for stability, variability and robustness 
of efficiency results obtained using the VRS. All analyses 
mentioned above were conducted using R [55].

Results
Descriptive results
Table 2 describes the characteristics of the sample of hos-
pitals in this study. There were 24 IC hospitals (12%) in 
2016. About 23.5% of hospitals (N = 47) were regional 
medical centers. The number of key clinical departments 
recognized by the government varied from 0 to 31 with a 
mean and SD of 2.05 and 3.97, respectively. The number 
of key clinical departments in IC hospitals (mean = 6.00; 
SD = 8.06) was substantially larger than those in non-IC 
hospitals (mean = 1.52; SD = 2.64). The average length of 
stay for discharged patients in IC hospitals was 23.83 days 
(SD = 43.44), which was substantially larger than that in 
non-IC hospitals (mean = 10.40; SD = 12.20) and in all 
the 200 hospitals (mean = 12.02; SD = 19.19). Overall, the 
mean inpatient mortality rate was small at 0.23% with SD 
of 0.01 and was smaller among IC hospitals than that in 
non-IC hospitals (P < 0.001). Bed density per physician 
and bed density per nurse averaged at 5.09 (SD = 5.31) 
and 3.68 (SD = 3.90), respectively, with no significant dif-
ference found between IC and non-IC hospitals.

Efficiency of hospitals
Table 3 reports the average efficiency scores of hospitals. 
Most hospitals obtained efficient scores, i.e., they were 
on the efficient production frontier. The mean efficiency 
score for hospitals was 0.81 when the VRS was used. A 
large percentage of these hospitals (N = 83, 41.5%) oper-
ated at their optimal level. Furthermore, 17% of hospitals 
(N = 37) had efficiency scores ranging from 0.7 to 0.9, 
here classified as being moderately efficient. Only 4 hos-
pitals had an efficiency score of less than 0.4, here clas-
sified as being extremely inefficient. When the efficiency 
scores were estimated using the CRS, the mean efficiency 
score fell to 0.76. In this CRS model, over 60 hospitals 
(31%) were identified as being efficient. Compared to the 
VRS model, fewer hospitals under the CRS model were 
efficient and the number of hospitals identified as mod-
erately efficient (N = 50, 25%) and extremely inefficient 
(N = 9, 4.5%) also increased.

IC hospitals were expected to operate more effi-
ciently than their non-IC counterparts. The mean CRS 
and VRS efficiency scores for IC hospitals was 0.88 and 
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0.96, respectively, which on average was larger than the 
scores for non-IC hospitals (0.74 and 0.80 respectively). 
These differences were statistically significant (P = 0.004 
in the CRS model; P < 0.001 in the VRS model). The scale 
efficiency score, which is the mean of the CRS and VRS 
efficiency scores [13], was 0.92 for IC hospitals and sub-
stantially larger (P = 0.001) than that for non-IC hospi-
tals (0.77). Meanwhile, the efficiency scores of the three 
different IC types were also reported in Table  3. It was 
found that virtual and administrative integration, on 
average, obtained higher efficiency scores than contrac-
tual integration.

The influence of IC on efficiency
Our research found out that the potential bias caused by 
confounding covariates was eliminated after matching. 
Adequate overlap between the IC hospitals and the non-
IC hospitals was shown in Additional file  1: Figure S1, 
and this implies that we could perform PSM using our 
dataset. Moreover, the results of the chi-square test and 
the Welch Two Sample t-test were shown in Additional 
file  1: Table  S1. After matching, no statistically signifi-
cant difference in covariates were found between IC hos-
pitals and non-IC hospitals. The mean of the difference 
in covariates between IC hospitals and non-IC hospitals 
was balanced after matching. No covariate had an abso-
lute standard difference of more than 20% after match-
ing and the mean standardized difference dropped from 
42.62 to 13.71% (Additional file  1: Table  S2 and Figure 
S3).

Table  4 reports the Tobit regression results. Non-IC 
hospitals were expected to achieve higher inefficiency 
scores than IC hospitals. In model 1, the estimated coef-
ficient of IC was -0.59 with a 95% CI between − 0.01 and 
0.17. When adjusting for all the covariates (model 2), the 
coefficient of IC was slightly smaller at -0.54 with a 95% 
CI between −  0.85 and −  0.23. This implies that com-
pared with IC hospitals, non-IC hospitals were expected 
to achieve 0.54 higher inefficiency score. This model also 
identified that bed density per nurse was a positive pre-
dictor of higher inefficiency. In contrast, the inefficiency 
score of hospitals that were regional medical centers was 
found to be 0.34 lower than other hospitals. Similarly, the 
number of key clinical departments and the bed density 
per physician were found to be negatively associated with 
inefficiency scores. Meanwhile, the results of the CRS 
model only presented slight differences compared with 
the VRS model.

The influence of IC on each input and output variable 
was reported in Table  5. IC was expected to be associ-
ated with a set of input and output variables. The num-
ber of physicians, nurses, other employees, and beds in 
IC hospitals were significantly larger than those in the 

non-IC hospitals. The same positive influence of IC on 
discharges, length of stay, inpatient visits, and emergency 
visits was found. The goodness of fit  (R2) was generally 
low at 10% for input variables and 8% for output vari-
ables. The P-value for the F-test for all the models was 
smaller than 0.05, implying that all the models passed the 
joint hypothesis test.

Results of sensitivity analyses
The results of sensitivity analyses were reported in 
Table 6. We first conducted ordinary least square regres-
sion analysis. It was demonstrated that in the VRS model, 
the coefficient on IC for hospital inefficiency was − 0.35, 
which was smaller than the results derived from the 
Tobit regression. When adjusting for all the covariates, 
the coefficient on IC was − 0.33, which was also smaller 
than that in the model where Tobit regression was per-
formed. Second, we compared the results with PSM and 
without PSM. Compared with models using PSM, the 
same negative, but larger, influence of IC on hospital inef-
ficiency (coefficient was −  0.65) was found in the VRS 
model without PSM. When adjusting for all the covari-
ates, the negative influence of IC on hospital inefficiency 
(coefficient was − 0.43) was still found in the VRS model. 
Moreover, under the CRS assumption, the positive influ-
ence of IC implementation on hospitals efficiency was 
found to be smaller at − 0.433 and − 0.423 for the CRS 
model without and with covariates, respectively. These 
results imply that our research results were robust to 
these considerations.

Discussion
We combined PSM and Tobit regression techniques to 
investigate the impact of IC adoption on hospital effi-
ciency calculated through DEA methods after control-
ling for potential confounding. We demonstrated that the 
adoption of IC had a positive effect on hospital efficiency 
after controlling for a range of covariates.

It is found that the mean efficiency score of all the sampled 
hospitals under the VRS assumption was 0.81, but it fell to 
0.76 when the CRS was used. This may be explained by that 
hospitals’ size is assumed to be not relevant to their efficiency 
under the CRS assumption, but large hospitals were assumed 
to achieve a higher level of efficiency than small hospitals 
under the VRS assumption [44]. Our results also suggest that 
the type of IC had a differential effect on hospital efficiency 
with vertical and administrative integration models yielding 
higher efficiency scores compared to the contractual integra-
tion model. Given the degree of governmental control over 
institutions in China [46], it was anticipated that the admin-
istrative model of IC would fare better in terms of hospital 
efficiency than the contractual model. At the same time, the 
success of the vertical integration model may be attributed to 
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the rapid development of both information technology and 
artificial intelligence, which offers the potential to enhance 
outcomes and conserve resource inputs [56].

The main study finding that IC hospitals were more effi-
cient than non-IC hospitals is congruent with previous 
research in the literature [25–29]. However, our study is 
at variance with literature that reported negative effects of 
integration on efficiency [30]. This discrepancy could be 
explained by differences in the unit of analysis and the way 
integration was measured in previous studies. Integration 
in those studies was measured by the number of integrated 
HIV and sexual and reproductive health services in the same 
clinical room. This may reveal that although integration 
might improve hospital efficiency in general, there might be 
negative effects of integration per clinical room.

Our study explored the pathways through which IC might 
promote hospital efficiency. Our research demonstrates that 
IC was statistically associated with a range of input and out-
put variables, which may reveal the pathways through which 

IC impacts hospital efficiency. This is consistent with a pre-
vious research that has shown that IC could improve health 
services utilization significantly and therefore lead to higher 
efficiency [57]. What’s more, our study demonstrated spe-
cific relationships between IC and each input/output vari-
able. It was found that IC could influence a set of hospital 
output variables, such as length of stay, inpatient visits, emer-
gency visits and the number of patients discharged. Mean-
while, IC was also found to be associated to a range of input 
variables, including number of physicians, nurses, other 
employees, and hospital beds. These findings provide pre-
liminary evidence about how IC changes hospital efficiency 
by reallocating medical resources and impacting hospital 
production processes.

Our research has important policy implications which 
may be helpful for future healthcare reforms. This research 
showed how the adoption of IC resulted in improvements 
to hospital efficiency. Opportunities to foster the develop-
ment of those types of IC that have the greatest potential to 

Table 2 Descriptive statistics for the sample hospitals

Code Explanation of the variable N Mean SD Median Min Max

Input variable

 NP Number of physicians 200 86.593 175.949 20 1 1265

 NAMS Number of ancillary medical Staff 200 3.722 3.953 3 0 30

 NN Number of nurses 200 144.742 338.667 33 0 2684

 NOE Number of other employeesstaff, including administrative, technical staff 
and logistic staff

200 111.792 176.389 54 2 1,563

 NB Number of hospital beds 200 303.970 556.952 93 0 4042

 OO Operating cost 200 192,476.615 599,029.829 22,317 854 5,283,269

Output variable

 ND NAnnual number of discharges from hospital 200 9835.319 20,289.562 2688 0 136,788

 UD Length of stay (bed days per year) 200 100,289.537 205,961.229 20,471 0 1,439,541

 NIA Annual nNumber of inpatient admissions 200 9842.152 20,305.706 2665 0 136,926

 NOV Annual nNumber of outpatient visits 200 119,606.523 350,487.324 14,999 0 2,870,064

 NEV Annual nNumber of emergency visits 200 20,926.295 43,641.697 6480 0 396,063

 AVFP Annual nNumber of annualfamily visits for family planning 200 1019.411 3916.575 1019 0 53,515

 ARH Annual revenues of hospitals 200 179,652.965 596,434.739 15,757 108 5,179,985

 NS Annual nNumber of surgeries 200 3597.900 8437.977 2527 0 71,788

Independent variable

 IC1 Whether implementing IC or not 200 Yes: n = 24 (12%); No: n = 176 (88%)

 ROPA Average length of stay for discharged 200 12.016 19.188 9 1 193

 NAPP Beds density per physician 200 5.092 5.314 4 0 40

 NAPN Bed density per nurse 200 3.683 3.896 3 0 31

 RMA Inpatient mortality rate 200 0.002 0.008 0 0 0

 WHC Facility type measure by whether the hospital is a regional medical center 
or not

200 Yes: n = 47 (23.5%); No: n = 152 (76%)

 TNS Clinical specialization measured by the number of key clinical department 200 2.058 3.971 2 0 31

Dependent variable

 INEFF(VRS) Inefficiency score of hospital 200 0.346 0.478 0 0 3

 INEFF(CSR) Inefficiency score of hospital 200 0.512 0.836 0 0 8
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enhance hospital efficiency may be pursued. Policies such as 
“Guiding Opinions on Promoting the Integration of Health-
care and Elderly Care Services” [58] would help the diffu-
sion of such IC models across China. Moreover, there is the 
potential to expand the scope of IC beyond hospitals to other 
health care settings.

Our research has some strengths: First, to the best of our 
knowledge, this is the first paper to investigate the influ-
ence of IC on hospital efficiency in China. This research 
adds empirical evidence to the pool of global IC evalua-
tive research and offers practical suggestions for IC reform. 
Moreover, PSM was used in our study to remove potential 
confounding associated with the uptake of IC and Tobit 
regression analysis was adopted to deal with the censoring 
of the dependent variable (in our case hospital inefficiency). 

These techniques help to ensure reliable and robust esti-
mates. Third, our research included all hospitals in one Chi-
nese city and therefore was representative of hospitals in that 
city.

Several limitations warrant recognition: First, we were 
unable to assess the role of environmental factors, such as 
population size and poverty, on hospital efficiency due to 
a lack of available data. Future studies with datasets across 
different administrative regions will allow for more pre-
cise conclusions. However, our research results are still 
robust in terms of controlling the covariates included by our 
research. Second, there was an absence of cross-sectional 
data to explain the long-term causal effects of IC on hos-
pital efficiency. Nevertheless, our research results were still 
useful in the evaluation of associations and the short-term 

Table 3 Average efficiency scores of hospitals

Hospital Efficiency score (VRS) Efficiency score (CRS) Scale efficiency score

Mean efficiency score of IC hospitals 0.957 0.875 0.916

Mean efficiency score of AI 1 1 1

Mean efficiency score of CI 0.949 0.850 0.900

Mean efficiency score of VI 1 1 1

Mean efficiency score of non-IC hos-
pitals

0.790 0.739 0.765

Mean efficiency score of all hospitals 0.810 0.755 0.783

Table 4 The impact of different factors on the inefficiency score of hospitals using Tobit regression

Significance codes: ‘***’ ≤ 0.001; ‘**’ ≤ 0.01; ‘*’ ≤ 0.05

Model 1 Model 2

Estimate (Std.Error) t-value Pr( >|t|) 95%CI Estimate (Std.Error) t-value Pr( >|t|) 95%CI

Intercept 0.218 (0.145) 1.499 0.134 [− 0.067, 0.502] 0.485 (0.153) 3.174 0.002** [0.186, 0.785]

IC1 − 0.592 (0.215) − 2.756 0.006** [− 1.012, − 0.171] − 0.538 (0.159) − 3.390 0.001*** [− 0.848, − 0.227]

RMA − 19.490 (12.388) − 1.573 0.116 [− 43.769, 4.790]

WHC − 0.337 (0.162) − 2.087 0.037* [− 0.654, − 0.020]

TNS − 0.054 (0.018) − 3.065 0.002** [− 0.088, − 0.019]

NAPP − 0.169 (0.056) − 3.026 0.003** [− 0.278, − 0.060]

ROPA 0.003 (0.004) 0.744 0.457 [− 0.005, 0.010]

NAPN 0.354 (0.097) 3.658 0.000*** [0.165, 0.544]

Variance of model − 0.47329 (0.1699) − 2.783 0.005** [− 0.806, − 0.140] − 0.935 (0.162) − 5.764 0.000 *** [− 1.252, − 0.617]
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effects of IC on hospital efficiency. Third, we only have data 
on all hospitals in one city which limits the generalizability 
of our results. While this limitation is common in studies, 
we were fortunate to have the universe of hospitals in our 
study city included, and moreover, this study city is located 
in central China and is representative of all China in having 
average economic and social development. Consequently, 
our findings are still applicable to the role of IC on hospi-
tal efficiency in China. Fourth, while our study addressed a 
range of statistical concerns, we were still unable to resolve 
the potential for endogeneity of the relationship between IC 
and efficiency. A higher degree of integration can improve 
hospital efficiency, but an efficient hospital is also good at 
integrating health services [15]. Such endogeneity problems 
could be addressed by applying appropriate instrumental 
variables in future studies.

Conclusions
This study has demonstrated the potential gains to hospital 
efficiency in China associated with the adoption of IC. This 
study has also found that IC may enhance hospital efficiency 
through exerting impact on number of physicians, nurses, 
other staff, hospital beds, patients discharged, inpatient vis-
its, emergency visits, and length of stay. The work has also 
highlighted the greater potential for gains in efficiency asso-
ciated with the virtual and administrative models of IC rela-
tive to other types of IC. These findings may assist policy 
decision makers that are confronted with increased pressure 
on the health system due to an aging population and one 
with an increasing prevalence of chronic conditions. Inte-
grated care has been shown to enhance health system per-
formance and opportunities to facilitate uptake and remove 
barriers to its adoption have potential to improve population 
health and conserve scare health care resources.

Table 5 The influence of IC on output and input variables

Significance codes: ‘***’ ≤ 0.001; ‘**’ ≤ 0.01; ‘*’ ≤ 0.05

Dependent variable Estimate (Std.Error) t-value Pr( >|t|) 95%CI

Output variable

 ND 19,179 (8,766) 2.188 0.034* [1,511.749, 36,845.56]

 UD 229,088 (86,403) 2.651 0.011* [54,955.40, 403,221.4]

 NIA 19,246 (8,763) 2.196 0.033* [1,584.254, 36,906.88]

 NOV 237,400 (153,958) 1.542 0.130 [− 72,882.971, 547,682.4]

 NEV 53,604 (21,171) 2.532 0.015* [10,936.58, 96,271.92]

 AVFP − 2,470 (2,300) − 1.074 0.289 [− 7,105.227, 2,164.915]

 ARH 361,001 (258,554) 1.396 0.170 [− 160,081.04, 882,083.0]

 NS 6,432 (3,689) 1.743 0.088 [− 1,003.135, 13,866.44]

Input variable

 NP 165.70 (71.34) 2.322 0.025* [21.912, 309.480]

 NAMS − 1.2416 (1.217) − 1.020 0.313 [− 3.694, 1.211]

 NN 344.4 (141.4) 2.435 0.019* [59.401, 629.469]

 NOE 129.34 (64.04) 2.020 0.050* [0.265, 258.412]

 NB 649.3 (236.4) 2.747 0.009** [172.932, 1,125.676]

 OO 334,981 (262,901) 1.274 0.209 [− 194,861.68, 864,823.9]
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