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Abstract 

Background: Research on the relationships between economic development, energy consumption, environmental 
pollution, and human health has tended to focus on the relationships between economic growth and air pollution, 
energy and air pollution, or the impact of air pollution on human health. However, there has been little past research 
focused on all the above associations.

Methods: The few studies that have examined the interconnections between the economy, energy consumption, 
environmental pollution and health have tended to employ regression analyses, DEA (Data Envelopment Analysis), 
or DEA efficiency analyses; however, as these are static analysis tools, the analyses did not fully reveal the sustainable 
economic, energy, environmental or health developments over time, did not consider the regional differences, and 
most often ignored community health factors. To go some way to filling this gap, this paper developed a modified 
two stage Undesirable Meta Dynamic Network model to jointly analyze energy consumption, economic growth, air 
pollution and health treatment data in 31 Chinese high‑income and upper‑middle income cities from 2013–2016, for 
which the overall efficiency, production efficiency, healthcare resource utilization efficiency and technology gap ratio 
(TGR) for all input and output variables were calculated.

Results: It was found that: (1) the annual average overall efficiency in China’s eastern region was the highest; (2) the 
production stage efficiencies were higher than the healthcare resource utilization stage efficiencies in most cities; (3) 
the high‑income cities had lower TGRs than the upper–middle income cities; (4) the high‑income cities had higher 
average energy consumption efficiencies than the upper‑middle income cities; (5) the health expenditure efficiencies 
were the lowest of all inputs; (6) the high‑income cities’ respiratory disease and mortality rate efficiencies were higher 
than in the upper–middle income cities, which had improving mortality rate efficiencies; and (7) there were signifi‑
cant regional differences in the annual average input and output indicator efficiencies.

Conclusions: First, the high‑income cities had higher average efficiencies than the upper‑middle income cities. 
Of the ten eastern region high‑income cities, Guangzhou and Shanghai had average efficiencies of 1, with the least 
efficient being Shijiazhuang. In the other regions, the upper‑middle income cities required greater technology and 
health treatment investments. Second, Guangzhou, Lhasa, Nanning, and Shanghai had production efficiencies of 
1, and Guangzhou, Lhasa, Nanning, Shanghai and Fuzhou had healthcare resource utilization efficiencies of 1. As 
the average production stage efficiencies in most cities were higher than the healthcare resource utilization stage 
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Background
Global fossil fuel resources have been rapidly depleted 
since the beginning of the industrial revolution, and in 
the past few decades, climate change effects have become 
more apparent around the world. As a result, there has 
been an increased focus on energy efficiency and new 
clean energy technologies to reduce global carbon emis-
sions. Because China is now the largest carbon dioxide 
emitter at around 28% of all global emissions, the Chi-
nese government launched the “National Ambient Air 
Quality Standard”, which outlined aims to reduce its 
 PM2.5 national emissions to 35 μg/m3 by 2030 [50]. The 
13th Five-Year Plan, which was adopted on 15 March 
2016, also included a goal to reduce sulfur dioxide and 
carbon dioxide emissions by 7% by 2040 [50]. Air pollut-
ants and especially particulate matter have been found to 
contribute to increases in urban lung and cardiovascular 
diseases [32], with the World Health Organization (2018) 
reporting that in 2016, there were 4.2 million premature 
deaths due to  PM2.5; 5 8% due to heart disease and stroke, 
18% due to chronic obstructive pulmonary disease and 
acute lower respiratory infection, and 6% due to lung 
cancer. Because China has the world’s worst air quality, 
the Chinese government has begun to heavily invest in 
air quality improvements.

There has been significant research into the rela-
tionships between economic development, energy, 

and environmental pollution [17, 27, 48, 49, 52]), with 
some specifically focusing on energy and air pollu-
tion factors ([1, 8, 9, 12, 13, 18, 19, 26, 37, 48, 49, 54, 
55]). The relationships between air pollution, health, 
and especially children’s health have also been major 
research foci [14, 16, 20, 21, 25, 31, 33, 36, 40, 46, 47, 
51, 53, 56] and [6, 7, 15, 22, 23, 24, 30, 34, 38, 39]).

However, there has been little research on the inter-
connections between economic development, energy 
consumption, environmental pollution and health, 
or environmental pollution’s impact on social activi-
ties due to the health effects. The few studies that 
have examined these interconnections have tended 
to employ regression analyses, DEA (Data Envelop-
ment Analysis), or static DEA efficiency tools that 
have lacked any dynamic considerations, which 
meant that the results did not fully reveal the sus-
tainable economic, energy, environmental, and health 
developments over time. Therefore, past research 
has ignored the impact of social activities on human 
health, failed to reflect annual changes, and also 
failed to provide a comprehensive discussion on the 
connections between the economy, environmental 
pollution and health issues. Further, past research has 
only tended to examine the impact of environmental 
pollution such as  CO2 and PM2.5 on first-stage eco-
nomic production and have rarely considered the 

efficiencies, greater efforts are needed to improve the healthcare resource utilization. Third, the technology gap ratios 
(TGRs) in the high‑income cities were slightly higher than in the upper‑middle income cities. Therefore, the upper‑
middle income cities need to learn from the high‑income cities to improve their general health treatment TGRs. 
Fourth, while the high‑income cities had higher energy consumption efficiencies than the upper‑middle income cit‑
ies, these were decreasing in most cities. There were few respiratory disease efficiency differences between the high‑
income and upper‑middle income cities, the high‑income cities had falling mortality rate efficiencies, and the upper‑
middle income cities had increasing mortality rate efficiencies. Overall, therefore, most cities needed to strengthen 
their health governance to balance economic growth and urban expansion. Fifth, the average AQI efficiencies in both 
the high‑income and upper‑middle income cities were higher than the average  CO2 efficiencies. However, the high‑
income cities had lower average  CO2 emissions and AQI efficiencies than the upper‑middle income cities, with the 
AQI efficiency differences between the two city groups expanding. As most cities were focusing more on air pollu‑
tion controls than carbon dioxide emissions, greater efforts were needed in coordinating the air pollution and carbon 
dioxide emissions treatments. Therefore, the following suggestions are given. (1) The government should reform the 
hospital and medical systems. (2) Local governments need to strengthen their air pollution and disease education. 
(3) High‑income cities need to improve their healthcare governance to reduce the incidence of respiratory diseases 
and the associated mortality. (4) Healthcare governance efficiency needs to be prioritized in 17 upper‑middle income 
cities, such as Hangzhou, Changchun, Harbin, Chengdu, Guiyang, Kunming and Xi’an, by establishing sound medical 
management systems and emergency environmental pollution treatments, and by increasing capital asset medical 
investments. (5) Upper‑middle income cities need to adapt their treatment controls to local conditions and design 
medium to long‑term development strategies. (6) Upper‑middle income cities need to actively learn from the techno‑
logical and governance experiences in the more efficient higher‑income cities.

Keywords: Air pollutant, Data envelopment analysis, Economic efficiency, Energy consumption, Healthcare resource 
utilization efficiency
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important AQI environmental indicators or discussed 
the relationships between production and health 
management.

Even though it is well known that different cities and 
different regions have different development levels, 
a majority of past studies have failed to provide such 
regional comparisons. While Feng et  al. [14] recently 
employed a two-stage meta-frontier dynamic network 
data envelopment analysis (TMDN-DEA) model to 
explore energy consumption’s environmental pollution 
effects on child and adult mortality in 28 EU countries 
and 53 non-EU countries from 2010 to 2014, the research 
was mainly focused on the EU and non-EU countries. 
Therefore, to go some way to filling this gap, this study 
proposes a modified Undesirable Meta Dynamic Net-
work model to explore the economic, energy, environ-
mental, and human health efficiencies in 31 Chinese 
cities.

This research has two main contributions. First, this 
study explored the economic, energy and environmen-
tal pollution efficiencies across China and the associated 
government health expenditure and disease efficiencies. 
Second, to avoid any shortcomings associated with static 
analyses, carry-over impacts across the periods were 
included and the regional differences accounted for, for 
which a modified Undesirable Meta Dynamic Network 
model was developed to assess data from 2013–2016 in 
31 Chinese cities in two stages; a production stage and 
a health treatment stage. In the production stage, labor 
and energy consumption were the inputs, GDP was the 
output, and  CO2 (carbon dioxide) and the AQI (air qual-
ity index) emissions were the link variables between the 
production stage and health treatment stage, and in the 
second health treatment stage, health expenditure was 
the input, birth rate, respiratory disease rate, and mortal-
ity rate were the outputs, with the carryover being fixed 
assets.

The remainder of this paper is organized as fol-
lows. “Literature review” section gives the Literature 
review,   “Research method” section details the research 
method, “Empirical study” section examines the empiri-
cal results and provides an analytical discussion, and 
“Discussion” section gives the policy recommendations 
and managerial implications.

Literature review
Research on the connections between economic devel-
opment, energy, environmental pollution, and human 
health has tended to follow three main paths: the rela-
tionships between economic growth and air pollution; 
energy and air pollution efficiencies; and the impact of air 
pollution on human health.

Relationships between economic growth and air pollution
Because the unfettered global focus on economic growth 
has led to a significant increase in environmental pollu-
tion, there has been a growing body of research focused 
on the relationships between economic growth and air 
pollution.

Georgiev and Mihaylo [17] tested the Environmental 
Kuznets Curve (EKC) hypothesis on four local and two 
global air pollutants and found that the EKC inverted 
U-shaped relationship between income and pollution 
did not hold for all gases, Xie et  al. [52] found that an 
improvement in  PM2.5 emissions would result in a growth 
in China’s GDP, Li et al. [27] conducted an environmental 
and economic analysis using a willingness to pay model, 
Wang et al. [48, 49] used panel smooth transition (PSTR) 
models to study the relationships between China’s eco-
nomic growth and carbon dioxide emissions.

Energy and air pollution efficiency
Energy consumption and economic development are 
inevitably linked; however, higher energy consumption 
generally results in a commensurate increase in air pollu-
tion; therefore, there has been a significant research focus 
on energy efficiencies. For example, Hu and Wang [19] 
analyzed the energy efficiencies in 29 Chinese adminis-
trative regions from 1995 to 2002 and found that Central 
China had the worst energy efficiency, Fang et  al. [12] 
used DEA to study energy performances in China and 
the United States, and found that China’s technical effi-
ciency was worse, and Choi et al. [8] explored low carbon 
dioxide efficiency in China using an SBM model. In other 
research, Liou and Hu [26] calculated the ecological total-
factor energy efficiencies (ETFEE) in 30 Chinese regions 
from 2005 to 2009 using an SBM model, and found that 
there was a monotonic increasing relationship between 
regional ETFEE and China’s per capita GDP. In more 
recent studies, Zhang and Choi [55] employed an SBM 
model and found that most provinces had low energy 
efficiencies, Apergis et al. [1] found that the energy effi-
ciencies in capital-intensive OECD countries were higher 
than in energy-intensive OECD countries, and Yao et al. 
[54] employed panel data and a meta-frontier non-radial 
Malmquist  CO2 emissions performance index (MNM-
CPI) and found that the Chinese industrial sector had an 
average annual  CO2 emissions growth rate of 5.53%, the 
average industrial sector carbon dioxide emissions in the 
eastern, central and western regions had declined, and 
the MCPI has overestimated the carbon dioxide emis-
sions efficiencies.

More recently, Wang et  al. [48, 49] examined China’s 
energy productivity from 1995 to 2012, and found that 
the capital and energy trend substitutions were similar to 
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the labor and energy trend substitutions and that energy 
productivity changes were mainly affected by technologi-
cal progress, Guo et al. [18] used a dynamic SBM DEA to 
study the energy efficiency in 26 OECD countries, find-
ing that Canada and China had the best, Qin et al. [37] 
explored the energy efficiency of Chinese coastal areas 
and found that the energy efficiencies were lower when 
undesirable output was considered, and Feng et  al. [13] 
explored the effect of industrial structural adjustment 
market-oriented reforms and the strengthening of envi-
ronmental protection measures on China’s  CO2 emis-
sions efficiency. In other research, Emrouznejad and 
Yang [9] reviewed energy efficiency DEA research, Li 
and Lin [28] used bootstrap to survey total factor energy 
consumption in China, and Li et al. [29] found that high-
income Chinese cities had higher technological efficien-
cies than low-income Chinese cities from 2013 to 2016.

Impact of air pollution on human health
There has been substantial research into the effects of 
specific air pollutants because of the known adverse 
effects on community health. For example, Pope [36] 
found that a local steel mill was emitting 82% of all indus-
trial PM10(particulate matter) and that in some months 
from April 1985 to February 1988, the daily PM10 levels 
exceeded 150  μg/m in the Utah Valley. Using a Poisson 
regression, Maheswaran et  al. [31] examined the effects 
of  NO2 (nitrogen dioxide)  PM10 and CO (carbon monox-
ide) on stroke mortality and hospital admissions in Shef-
field, United Kingdom from 1994 to 1998, and found that 
outdoor air pollution levels were associated with higher 
stroke mortality and hospital admission risks. Fischer 
et  al. [16] found that long-term exposures to  PM10 and 
 NO2 were related to mortality in people over the age of 
30 in the Netherlands, Lelieveld et  al. [25] found that 
 PM2.5 (particulate matter) caused 3.3% of annual world-
wide premature deaths, and Wu et  al. [51] concluded 
that exposure to particulate air pollution affected circu-
lating antioxidant enzymes. In more recent studies, Yang 
et al. [53] found that all pollutants were positively corre-
lated with prehypertension in northeast China in 2009, 
Vlaandern et  al. [47] found that short-term exposure to 
air pollution interfered with blood metabolism, Shen 
et al. [40] found that the current AQI system was unable 
to accurately estimate the air pollution health risks, and 
Zhao et al. [56] found that of the 307 cyclists interviewed 
in Beijing in 2015 on heavily polluted days, most were 
low-income males over 30  years old or short-distance 
travelers. In related research, Ngo et  al. [33] found that 
sandstorms were associated with per capita acute respir-
atory diseases, Torres et al. [46] found that sulfur dioxide 
and fine particles increased cardiovascular and respira-
tory diseases, Huang et al. [20] found that family income 

and education were negatively correlated with ambient 
air quality in Beijing in 2014, and Lua et al. [30] estimated 
that in 2017, 3800 out of 124,800 deaths in Hainan were 
due to  PM2.5 exposure.

The impact of air pollution on children’s health has 
also been widely examined. For example, Feng et al. [14] 
employed a two-stage meta-frontier dynamic network 
DEA (TMDN-DEA) model to explore the influence of 
energy consumption and the associated environmen-
tal pollution on the mortality of children and adults in 
28 EU countries and 53 non-EU countries from 2010 to 
2014, Lee et  al. [24] used a generalized additive model 
(GAM) time series analysis to explore the effect of mul-
tiple air pollutants (sulfur dioxide  (SO2), nitrogen dioxide 
 (NO2), ozone  (O3), carbon monoxide (CO) and aerody-
namic diameter  (PM10)) on the health of the children 
under 15 years old in Seoul from 1997 to 1999, and found 
that nitrogen dioxide and ozone were the main contribu-
tors to childhood asthma. In more recent research, Chen 
et  al. [6] found that  PM2.5 and  PM10 affected the health 
and lung function of primary school children, Fioravanti 
et al. [15] found that traffic air pollution had no effect on 
childhood obesity in children aged 4 and 8 years in Rome, 
and Knibbs et  al. [22] found that exposure to outdoor 
 NO2 affected the respiratory systems of children aged 
7–11 in Australia. In other similar studies, Salavati et al. 
[39] found that air pollutants affected pregnant women’s 
health, Chen et  al. [7] found that a higher air pollution 
exposure was associated with respiratory disease and 
impaired lung function prevalence in younger children in 
China, Nobles et al. [34] found that air pollution caused 
fetal growth restrictions, Landrigan et al. [23] found that 
air, water, soil and chemical pollution caused 940,000 
child deaths worldwide, and Roberts et al. [38] found no 
associations between pollution exposure, air quality and 
mental health issues.

Literature review summary
Most of the above research only focused on one or two 
aspects, with no studies having analyzed the relationships 
between economic development, energy, environmental 
pollution and human health. Therefore, to fill this gap, the 
method proposed in Feng et al. [14] was used to develop 
a modified Undesirable Meta Dynamic Network DEA 
model to examine the economic development, energy, 
environmental pollution and human health efficiencies 
in 31 Chinese cities in China, identify the regional differ-
ences, and provide suggestions for improvement.

Research method
Methodological framework
Past research on energy and environmental efficiencies 
([19]) used labor, fixed assets and energy consumption 
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as the inputs and GDP,  CO2 and  SO2 emissions as the 
outputs. This study used panel data from 31 of the most 
developed high-income and upper-middle income cities 
in China, the division for which was based on the World 
Bank’s classification for rich and poor countries, that 
is, the high-income economies had a GNI per capita of 
$12,056 or more, and the upper-middle income econo-
mies had a GNI per capita of between $3896 and $12,055.

From this calculation, the 31 sample cities were divided 
into 14 high-income cities: Beijing, Changsha, Fuzhou, 
Guangzhou, Hangzhou, Huhehot, Jinan, Nanchang, Nan-
jing, Shanghai, Shenyang, Tianjin, Wuhan, and Zheng-
zhou: and 17 upper-middle income cities: Chengdu, 
Changchun, Chongqing, Guiyang, Harbin, Haikou, Hefei, 
Kunming, Lanzhou, Lhasa, Nanning, Shijiazhuang, Tai-
yuan, Urumqi, Xian, Xining, Yinchuan. Data from 2013 
to 2016 were extracted from the Statistical Yearbooks of 
China, the Demographics and Employment Statistical 
Yearbooks of China, and the Statistical yearbooks from 
each city. Air pollutant data were collected from China 
Environmental Protection Bureau reports.

In the first stage analysis of the energy and economic 
efficiencies in each city, labor and energy consumption 
were the input indicators and GDP was the output indi-
cator, with the air quality index (AQI) and carbon dioxide 
 (CO2) emissions being the link indicators, and in the sec-
ond stage analysis of the government health expenditure 
efficiencies in each city, government health expenditure 
was the input indicator, and births, respiratory disease 
prevalence, and mortality rates were the output indica-
tors, with the carryover being fixed assets.

The variables are explained in the following.

Input variables
Labor: Employees; the number of employees in each 

city at the end of each year; Unit = people.
Fixed assets: capital stock in each city calculated as the 

fixed assets investment in each city; Unit = 100 million 
CNY;

Energy consumption: total energy consumption in 
each city; Unit = 100 million tonnes.

Output variables
GDP (Gross Domestic Product): The first stage of the 

research model in this study used gross domestic prod-
uct (GDP) as the expected output, which is an impor-
tant measure of the economic production in a country, a 
region or a city. Unit = 100 million CNY.

Link Production Stage and health stage variables:
CO2 emissions: the  CO2 emissions in each city were 

estimated from the energy consumption breakdown by 
fuel category.

Air quality Index (AQI): the measured pollutant con-
centrations for particulate matter:  PM2.5,  PM10, sulfur 
dioxide  (SO2), Nitrogen Dioxide  (NO2), Ozone(O3)and 
Carbon monoxide (CO), with the  PM2.5 and  PM10 being 
24-h average concentrations.

Second stage: health treatment stage
Input variables: health expenditure
Output variables: Birth rate; respiratory diseases; 

mortality rate.
Figure  1 shows the Network Dynamic Model frame-

work from Feng et al. [14] that was employed to explore 
the inter-period energy consumption, economic growth, 
air pollution and health efficiencies in 31 Chinese cities.

Model parameterization
When developing the traditional DEA model, based on 
Farrell [10] ’s theory for a generalized mathematical lin-
ear programming model that could measure multiple 
inputs and outputs at constant returns to scale, Charnes 
et al. [5] developed the CCR model, which was extended 
in 1984 by Banker et al. [2] to the BCC variable returns 
to scale (VRS) model. However, both the CCR and BCC 
models measured radial efficiency, which assumed that 
the input items and/or output items proportionally 
increased or decreased. However, as this assumption 
is not applicable in all situations, Tone [41] proposed a 
Slacks-Based Measure (SBM) model in 2001 that used the 
slack variables as the basis for measurement, considered 
the slacks between the input and output items, and used 
a non-radial estimation method to find the single value 
(scalar) improvement space. Then, Färe et  al. [11] pro-
posed Network Data Envelopment Analysis to determine 
the optimal solution under the CCR and BCC models, 
which found that the production process was composed 
of many sub-production technologies. Tone and Tsutsui 
[42] then proposed a weighted slacks-based measure in 
which the links between the departments of the various 
decision-making units were used as the analysis basis for 
the network DEA model, with each department being 
regarded as a sub-DMU, after which the SBM model was 
used to find the most suitable solution. Unlike traditional 
DEA models, as these sub-production technologies were 
seen as “black boxes”, the Network DEA was applied to 
explore the impacts of the input allocations and interme-
diate goods on the production process. In a later network 
DEA model development, Tone and Tsutsui [43] adopted 
a dynamic method to evaluate the DMU efficiencies at 
different times, and then introduced a carryover to con-
nect the various DMU stages in the different periods.

As the Dynamic DEA model measures operational 
efficiencies across multiple periods and the Network 
DEA analyzes the efficiency of individual depart-
ments, the limitations of traditional DEA models were 
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overcome. Therefore, in 2014, Tone and Tsutsui proposed 
a weighted slacks-based Dynamic Network DEA, which 
treated each department as a sub-DMU, and acknowl-
edged the links between the various decision-making 
unit departments and the carry-over activities between 
the different periods.

As this study considered both undesirable out-
puts and regional differences, Tone and Tsutsui’s 
[44] dynamic network SBM (Slacks-Based Measure) 
model was modified to an Undesirable Meta-Frontier 
Dynamic Network Model. Battese and Rao [3] and Bat-
tese et al. [4] proposed a meta-frontier model that was 
able to compare the technical efficiencies of different 
groups, after which O’Donnell et al. [35] established a 
meta-frontier model that accurately calculated meta-
frontier and group efficiencies. However, most DEAs 
assume that all DMUs have the same technology lev-
els, but as the DMUs in this study were in different geo-
graphical locations and were subject to varying regional 
policies, they had differing technology levels. There-
fore, in reference to Feng et  al.’s [14] framework and 
based on Tone and Tsutsui’s [44] Network Dynamic 
SBM, Tone and Tsutsui [45] and O’Donnell et al.’s [35] 

meta-frontier model, and by including the undesirable 
outputs, this paper developed an Undesirable Meta-
Frontier Dynamic Network Model on Chinese data to 
establish economic, environmental and health models.

Modified Undesirable Meta Dynamic Network model
Meta-frontier (MF)
It is assumed that all units (N) are composed of DMUs in 

g groups (N = N1 + N2 +…. + NG), where  yrj and  xij indicate 
the output item r (r = 1, 2, …, s) for item j (j = 1, 2, …, N) 
and input item i (i = 1, 2, …, m) for item j (j = 1, 2, …, N) 
under the meta-frontier. The DMU efficiency meta-frontier 
k is solved using the following linear programming (LP):

Suppose there are nDMUs
(

j = 1, . . . , n
)

 , with each 
having k divisions (k = 1, . . . ,K ) , and T  time periods 
(t = 1, . . . , T) . Each DMU has an input and output at 
time period t and a carryover (link) to the next t + 1 time 
period.

Inputs and outputs
Xt
ijk ∈ R+

(

i = 1, . . . ,mk ; j = 1, . . . , n; k = 1, . . . ,K ;

t = 1, . . . ,T ) refers to input i at time period t for DMUj 
division k ; Xt

ijk . In the first stage, the number of employ-

Fig. 1 Network model
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ees, fixed assets and energy consumption are used as the 
input variables, and in the second health expenditure 
treatment stage, government health expenditure is used 
as the input variable.
Y t
rjk ∈ R+

(

r = 1, . . . , rk; j = 1, . . . , n; k = 1, . . . ,K ; t = 1, . . . ,T
)

 
refers to output r in time period t for DMUj division k ; 
Y t
rjk . In the first stage, the GDP is the output, and in the 

second stage, the birth rate is the desirable output and 
respiratory disease and mortality rates are the undesira-
ble outputs.

Links

Linkink is the number of input links for each division k, 
Linkoutk is the number of output links for each division 
k, ngoodk indicates the number of desirable carry-overs 
for each division k , and nbadk indicates the number of 

undesirable carry-overs for each division k.
The meta-frontier k for the DMU efficiency is solved 

using the following linear programming (LP):
Objective function
Overall efficiency:

Subject to:
Production stage
xto1 = Xt

1�
t
1 + st−1o (∀t);

yto1good = Y t
1good�

t
1 − st+1ogood , (∀t);

�
t
1 ≥ 0, st−1o ≥ 0, st+1ogood ≥ 0, (∀t);
Zt
o(12)in = Zt

(12)in�
t
k + Sto(12)in((12)in)

Health treatment stage

xto2 = Xt
2�

t
2 + st−2o (∀t);

yto2good = Y t
2good�

t
2 − st+2ogood(∀t);

yto2bad = Y t
2bad�

t
2 + st−2obad(∀t);

�
t
2 ≥ 0, st−2o ≥ 0, st+2ogood ≥ 0, st−2obad ≥ 0(∀t);
e�tk = 1(∀k , ∀t);

(b) Period and division efficiencies
The period and division efficiencies are as follows:
(b1) Period efficiency

(1)θ∗0 = min

∑T
t=1 W

t

[

∑K
k=1 W

k

[

1−
1

mk+linkink+ninputk

(

∑G
g=1

∑mk
i=1

St−iok
xtiokg

+
∑G

g=1

∑linkinl
(kl)l=1

sto(kh)l in

zto(kh)l ing
+

∑G
g=1
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Zt
j(kh)t ∈ R+(j = 1, . . . , n; l = 1, . . . , Lhk; t = 1, . . . ,T  

are the period t links from DMUj division k to division h , 
with Lhk being the number of k to h links; Zt

j(kh)t .  CO2 and 
the AQI are the link indicators in both the first produc-
tion stage and the second health treatment stage.

Carryovers
Z
(t,t+1)
jkl ∈ R+

(

j = 1, . . . , n; l = 1, . . . , Lk; k = 1, . . .K ; t = 1, . . . ,T − 1
)

 
are the carry-overs from t to the t + 1 from DMUj divi-
sion k to division h , with Lk being the number of carry-
over items in division k ; Z(t,t+1)

jkl  . Fixed assets investment 
is the carry-over indicator in the production stage.
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(b2) Division efficiency

(b3) Division period efficiency

From the above, using the meta-frontier model, the 
overall efficiency, period efficiency, division efficiency, 
and division period efficiency can be obtained.

Group-frontier (GF)
As each DMU under the group frontier chooses 

the most favorable final weighted output, the DMU 
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efficiencies under the group frontier are solved using the 
following equations.

(a) Objective function
Overall efficiency

(b) Period and division efficiencies
The period and division efficiencies are as follows
(b1) Period efficiency

(6)θ∗0 = min

∑T
t=1W

t

[

∑K
k=1W

k

[

1− 1
mk+linkink+ninputk

(

∑mk
i=1

St−iok
xtiok

+
∑linkink

(kh)l=1

sto(kh)l in

zto(kh)l in
+

ninputk
∑

kl

s
(t,t+1)
okl input

z
(t,t+1)
okl input

)]]

∑T
t=1W

t

[

∑K
k=1W

k

[

1+ 1
r1k+r2k

(

∑r1k
r=1

st+rokgood

ytrokgood
+

∑r2k
r=1

st−rokbad
ytrokbad

)]]

(7)∂∗0 = min

∑K
k=1W

k

[

1− 1
mk+linkink+ninput

(

∑mk
i=1

St−iok
xtiok

+
∑linkink

(kh)l=1

sto(kh)l in

zto(kh)l in
+

ninputk
∑

kl

s
(t,t+1)
okl input

z
(t,t+1)
okl input

)]

∑K
k=1W

k

[

1+ 1
r1k+r2kk

(

∑r1k
r=1

st+rokgood

ytrokgood
+

∑r2k
r=1

st−rokbad
ytrokbad

)]



Page 9 of 19Li et al. Cost Eff Resour Alloc           (2020) 18:32  

(b2) Division efficiency

(b3) Division period efficiency

From the above results, the overall efficiency, the 
period efficiency, the division efficiency and division 
period efficiency are obtained.

Technology gap ratio (TGR)
As the meta-frontier model contains g groups, the 

technical efficiency of the meta-frontier (MFE) is less 
than the technical efficiency of the group frontier (GFE); 
therefore, the ratio value or technology gap ratio (TGR) 
is:
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(10)TGR =
ρ∗

ρ
∗g
o

=
MFE

GFE

Energy consumption, Health expenditure, Respiratory 
Diseases, Mortality Rate,  CO2 and AQI Efficiencies
Hu and Wang’s [19] total-factor energy efficiency index 
was used to overcome any possible biases in the tradi-
tional energy efficiency indicators, for which there were 
eight key efficiency models; energy, environment, health 
expenditure, respiratory diseases, mortality rate,  CO2 
emissions, and the AQI. In this study, “I” represents area 
and “t” represents time.

The efficiency models are defined in the following:

(11)Inputefficiency =
Target input

Actual input

Table 1 Input and output variables from 2013–2016 by region

Cities by region Labor Fixed assets

2013 2014 2015 2016 2013 2014 2015 2016

East 11699010.00 11844340.00 11963880.00 12088240.00 4830.72 5391.81 5898.81 6331.43

Central 7284183.33 7377433.33 7503350.00 7620033.33 4047.34 4710.62 5425.93 5642.37

Northeast 8578700.00 8568300.00 8952350.00 8956250.00 5004.07 4888.20 4735.23 3794.10

West 7158463.64 7207287.82 7871963.64 8050936.36 3062.44 3504.51 3823.97 4271.25

Cities by regions Energy consumption GDP

2013 2014 2015 2016 2013 2014 2015 2016

East 5486.35 5543.14 5533.04 5403.25 10363.64 11230.38 12071.21 13126.46

Central 2710.46 2842.72 2862.06 1797.11 5475.23 6008.49 6521.09 7135.90

Northeast 2692.40 1831.23 1704.54 1725.09 5583.27 5927.07 6184.50 6441.80

West 2392.18 2326.52 2479.46 2451.69 3717.34 4108.43 4447.69 4861.24

Cities by regions Carbon dioxide AQI

2013 2014 2015 2016 2013 2014 2015 2016

East 14310.43 14071.31 13542.47 12285.41 156 95 86 79

Central 7742.42 9263.67 9482.40 6461.84 178 103 94 90

Northeast 6926.98 7000.23 6703.04 7237.43 168 89 99 75

West 7477.08 6849.72 6774.11 7240.09 126 85 78 79
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If the target inputs equal the actual inputs, then the 
efficiencies are 1, which indicates overall efficiency; how-
ever, if the target inputs are less than the actual inputs, 
then the efficiencies are less than 1, which indicates over-
all inefficiency.

If the target undesirable outputs are equal to the actual 
undesirable outputs, then the efficiencies are 1, indicating 
overall efficiency; however, if the target undesirable out-
puts are less than the actual undesirable outputs, then the 
efficiencies are less than 1, indicating overall inefficiency.

Empirical study
Statistical analysis of the inputs and outputs
Table 1 shows the average input–output indicator quan-
tities in each Chinese region, from which it can be seen 
that there are large regional differences.

The labor force indicators in Table  1 show that the 
urban labor average in the eastern region was the high-
est and was rising in all periods to 2016. The urban 
average inputs in the northeastern region were also ris-
ing with some fluctuations in all period to 2016. How-
ever, the labor inputs were relatively small in the eastern 
and western regions, with the average labor input in the 
western region being the lowest of the four regions in 
2013 and 2014 but higher than the central region in the 
subsequent 2 years and showing a straight upward trend 
to the its highest level in 2016. Although the labor input 
in the central region also increased slightly, the input in 
2015 and 2016 was the lowest of the four regions.

In 2013, the urban fixed assets average in the northeast 
was the highest of the four regions; however, after that 
time, the average fell from 2014 to 2016. The largest fixed 
assets increases were in the eastern region, which from 
2014 to 2016 was the highest of all four regions. While 
the fixed assets input in the western region also contin-
ued to rise, the average urban fixed assets input from 
2013 to 2015 was the smallest of the four regions, but in 
2016 was higher than in the northeast. In general, the dif-
ferences between the regions were expanding.

The eastern region had the largest energy consump-
tion inputs in all time periods, the western region had the 
smallest in 2013, but from 2014 to 2016, the northeast 
region had the smallest and declining energy consumption 
inputs, with i s lowest level in all 4 years being in 2016.

The highest urban GDP average in all 4 years was in the 
eastern region, and even though the urban GDP average 
was rising in the western region, it was the lowest of the 
four regions in all 4 years.

Even though the carbon dioxide emissions in the eastern 
region were showing a linear downward trend in all 4 years, 

(12)

Undesirable output efficiency =
Target Undesirable output

Actual Undesirable output

in 2016, they were still much higher than in the other 
regions. The carbon dioxide emissions were the lowest in 
the western region in 2014, but the lowest in the north-
eastern region in 2013, 2015 and 2016. The carbon diox-
ide emissions in the northeastern region were also rising 
slightly and the gap between the regions was narrowing.

The highest air pollution index value was in the cen-
tral region in 2013, 2014 and 2016; however, in 2015, the 
average air pollution index in the northeastern region 
was higher than in the other regions. The lowest average 
urban air pollution index was in the western region from 
2013 to 2015, but in 2016, it was the lowest in the north-
eastern region. The air pollution index in all four regions 
had a downward trend, indicating that the air quality 
in most regions was improving, with only the western 
region rebounding slightly in 2016.

Results and analysis
Overall efficiency analysis
This study first compared the overall efficiencies in each 
city from 2013 to 2016, after which the first production 
stage efficiencies and the second healthcare resource uti-
lization stage efficiencies were compared.

The overall efficiency was the output divided by the 
input, which was then expressed as a percentage; there-
fore, a perfect process would have an efficiency of 100%.

Appendix 1 shows the overall efficiency in each city from 
2013 to 2016, from which it can be seen that Guangzhou, 
Lhasa, and Shanghai had overall efficiencies of 1 for all 
4 years, Beijing had an overall efficiency of 1 in the first year, 
which dropped to below 0.6 in 2015 and 2016, Nanning 
had an overall efficiency of 1 for the first 3 years, which in 
the last year dropped to around 0.68, and Jinan’s efficiency 
was poor in the first 3 years, but reached 1 in the final year. 
Fuzhou, Haikou, and Urumqi had better overall efficien-
cies than the other cities; however, Urumqi’s efficiency was 
lower in 2015 at 0.6 but higher than 0.8 in the other years. 
These results were similar to the empirical results in Choi 
et al. [8] and Zhang and Choi [55]. In general, the overall 
efficiencies in most provinces needed improvement.

In most other cities, the overall efficiencies over the 
4 years were below 0.6. Shijiazhuang had the lowest, with its 
highest efficiency in the 4 years being less than 0.3, the best 

Table 2 Average overall efficiencies from  2013–2016 
by region

Cities by regions 2013 2014 2015 2016

East 0.665 0.690 0.607 0.665

Central 0.535 0.486 0.465 0.502

Northeast 0.428 0.480 0.409 0.381

West 0.548 0.563 0.489 0.495
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annual efficiency in Taiyuan was less than 0.4 in 2013, Gui-
yang, Chengdu, Lanzhou, Kunming, Xian, and Xining’s had 
efficiencies of around 0.4, and Changchun, Harbin, Hang-
zhou, Hefei, Huhehot, Nanchang, Nanjing, Wuhan and 
Zhengzhou had efficiencies ranging from 0.4 to 0.6; there-
fore, most of these cities needed efficiency improvements.

Only six cities: Changsha, Chongqing, Hefei, Jinan, 
Shenyang, and Taiyuan: had increasing efficiencies, five 
of which were middle-income cities. Jinan’s efficiency, 
however, rose from around 0.4 to 1, and Hefei’s rose from 
below 0.5 in 2013 to close to 0.9 in 2016. Over the period, 
23 cities saw decreasing efficiencies, with Beijing, Nanning 
and Wuhan experiencing the largest declines. Wuhan’s 
overall efficiency in 2013 was around 0.9, which dropped 
to only 0.4 in 2016, and Beijing’s overall efficiency in 2013 
was 1, which by 2016 had fallen to around 0.5.

In reference to the empirical framework in Feng et  al. 
[14], Table  2 shows the annual efficiencies in China’s 
eastern, central, northeastern and western regions. The 
annual average overall efficiency in the eastern region 
was the highest, but at 0.665, there was a great need for 
improvements. The average overall efficiency in the west-
ern region was significantly higher than in the central and 
northeastern regions in 2013 and 2015, but fluctuated and 
declined and by 2016 was lower than the central region 
for the first time. Of the four regions, the lowest average 
total efficiency was in the northeastern region at only 0.5, 
and had a fluctuating downward trend, with the lowest 
being in 2016 at only 0.381; therefore, significant improve-
ments were needed. The annual average overall efficiency 
in the central region also had a fluctuating downward 
trend; however, there was a significant rise in 2016 to be 
second highest behind the eastern region, which was in 
line with the empirical results in Yao et al. [54]. Overall, all 
regions required overall efficiency improvements.

Production efficiency and healthcare resource utilization 
efficiency analyses
The significant regional economic growth and social 
development differences meant that there were large 
production and health treatment stage efficiencies differ-
ences between the cities (see Appendix 2). Guangzhou, 
Lhasa, Nanning, and Shanghai had production stage 

efficiencies of 1, and Guangzhou, Lhasa, Nanning, Shang-
hai and Fuzhou had heath treatment stage efficiencies of 
1. Generally, the production stage efficiencies in most cit-
ies were higher than the healthcare resource utilization 
stage efficiencies. A detailed analysis of the two-stage 
efficiencies is given in the following.

i. Production efficiency

Production efficiency is when an economic system is 
unable to produce any more of one good without sacrific-
ing the production of another good or without improving 
the production technology. In other words, production 
efficiency is when a good or a service is produced at the 
lowest possible cost. In simple terms, production effi-
ciency is illustrated on a production possibility frontier 
on which all points on the curve are indicators of produc-
tive efficiency. However, equilibrium may be productively 
efficient without being allocative efficient, that is, it may 
result in a goods distribution in which the social welfare 
is not maximized.

A city/region’s production efficiency is when all ser-
vices and enterprises within a city operate using best-
practice technological and managerial processes and 
there are no further reallocations that can result in 
greater output with the same inputs and production 
technology. By improving these processes, however, an 
economy or a business can extend its production pos-
sibility frontier outward so that the efficient production 
yields a greater output than previously.

Twenty-one of the 31 cities had higher production stage 
efficiencies than healthcare resource utilization stage effi-
ciencies, which indicated that these cities needed to place 
a greater focus on health treatment governance.

While Nanchang, Nanjing, Jinan and Beijing had pro-
duction stage efficiencies over 0.8 for 2 years, 3 years and 
4  years respectively, except for Lanzhou, Shijiazhuang, 
Taiyuan, and Xining, which had production stage effi-
ciencies of less than 0.4, most other cities had production 
stage efficiencies between 0.4 and 0.8.

Hefei, Huhehot, Jinan, Nanjing, Taiyuan, and Xining 
had increasing production efficiencies, with the larg-
est increase being in Jinan from below 0.6 in 2013 to 1 
in 2016. The production stage efficiencies in the other 

Table 3 Average production efficiency and healthcare resource utilization efficiency from 2013–2016 by region

Cities by regions Production efficiency Healthcare resource utilization efficiency

2013 2014 2015 2016 2013 2014 2015 2016

East 0.758 0.749 0.751 0.774 0.572 0.630 0.463 0.557

Central 0.724 0.731 0.721 0.630 0.346 0.244 0.208 0.374

Northeast 0.713 0.730 0.732 0.563 0.144 0.230 0.085 0.199

West 0.598 0.620 0.595 0.569 0.498 0.505 0.383 0.421
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21 cities fell, with the biggest declines being in Fuzhou, 
Urumqi, and Zhengzhou to around 0.2. These results 
were similar to the empirical results in Wang et  al. [48, 
49], in which it was found that most regions had low pro-
duction stage efficiencies and large regional differences.

 ii. Healthcare resource utilization efficiency

The average healthcare resource utilization efficiencies 
were far lower than the average production stage efficien-
cies. Fuzhou, Haikou, and Urumqi had higher health-
care resource utilization efficiency stage efficiencies than 
production stage efficiencies in all 4 years, and Lanzhou, 
Yinchuan and Xining had higher healthcare resource uti-
lization efficiencies than production stage efficiencies in 
3 years. Therefore, the local governments in these ten cit-
ies should focus more resources on improving their pro-
duction efficiencies.

Besides the five cities that had healthcare resource uti-
lization efficiencies of 1 in all 4 years, the efficiencies in 
the other cities were generally low. Fifteen upper-middle 
income cities: Changchun, Chengdu, Guiyang, Harbin, 
Hangzhou, Huhehot, Kunming, Nanchang, Nanjing, 
Shenyang, Shijiazhuang, Taiyuan, Tianjin, Xian, and 
Zhengzhou: had healthcare resource utilization efficien-
cies below 0.4, with eight of these: Changchun, Chengdu, 
Harbin, Nanchang, Shijiazhuang, Tianjin, Xian and 
Zhengzhou: having healthcare resource utilization effi-
ciencies below 0.2.

Table  3 shows the average annual production and 
health treatment stage efficiencies in the four regions. 
The highest annual average production stage efficiency 
was in the eastern region, which rose marginally over 
the 4  years. The central region had an average produc-
tion stage efficiency just below the eastern region in 2013 
and 2014, but it began falling in 2015, when it was slightly 
lower than in the northeast. The average efficiency in the 
central region had a fluctuating downward trend, with 
the lowest efficiency being in 2016. Of the four regions, 
the western region had the lowest average production 
stage efficiency, which had a downward fluctuating trend 
to its lowest in 2016 of only 0.569. Although the produc-
tion stage efficiency in the northeast region was higher 
than in the western region and in 2015 was higher than 

both the western and central regions, in 2016 it fell to 
only 0.563, which was lowest of the four regions.

The regional health treatment stage annual average 
efficiencies varied widely across the four regions. The 
eastern region had the highest efficiency, followed by the 
western region, the central region and the northeastern 
region, which dropped to only 0.085 in 2015 and had 
a rebound in 2016 to about 0.2, its highest point in the 
4  years. The health treatment stage annual average effi-
ciency in the central region was lower than either the 
eastern or western region and had a U-shaped change, 
rising to its highest point in 4  years in 2016 at 0.374. 
However, in 2014 and 2015, the central region’s health 
treatment stage annual average efficiency was lower than 
0.25, which was only slightly better than the northeast 
region; therefore, there were significant improvements 
needed.

Average overall efficiency and average TGR comparison 
between the city groups
Battese and Rao [3] stated that “the technology gap ratio 
indicates the technology gap for the given group accord-
ing to currently available technology for firms in that 
group, relative to the technology available in the whole 
industry”.

To more clearly analyze the regional differences, the 
high-income and upper-middle-income city overall effi-
ciencies and average TGRs were compared (Table 4).

From Table 4, it can be seen that the high-income cities 
had higher average efficiencies than the middle-income cit-
ies, but there were some variances. The average efficiency 
in the high-income cities increased from 0.63 in 2013 to 
around 0.66 in 2014, declined in 2015 to around 0.57, and 
rebounded slightly in 2016 to 0.60. However, the upper-
middle-income cities as a whole had lower average over-
all efficiencies. The average overall efficiency decreased 
slightly from 0.52 in 2013 to 0.51 in 2014, fell to 0.47 in 
2015 and rose slightly to 0.49 in 2016; however, the overall 
efficiency decline was slightly less than in the high-income 
cities. The Wilcoxon Test indicated that the differences in 
the high-income and upper-middle income city efficiencies 
were significant at 5% from 2013 to 2016, which indicated 

Table 4 TGRs and efficiency from 2013–2016 for the high-income and upper-middle income cities

**For the one-tailed test, the confidence interval 0.05 was significant

Cities by income TGR Efficiency

2013 2014 2015 2016 2013 2014 2015 2016

High‑income 0.731 0.802 0.718 0.708 0.632 0.656 0.565 0.600

Upper‑middle income 0.746 0.777 0.767 0.721 0.522 0.520 0.473 0.491

Wilcoxon test 0.354 0.271 0.211 0.437 0.040** 0.013** 0.024** 0.045**
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that the efficiencies in the high-income cities were signifi-
cantly better than in the upper-middle income cities.

The average TGRs were similar in the high-income 
and upper- middle income cities, with the average TGR 
in the high-income cities being only slightly higher at 0.8 
in 2014 than the upper-middle income cities. However, 
in 2015 and 2016, the average TGR in the upper-middle 
income cities was slightly higher than in the high-income 
cities, indicating that the TGR was falling in the high-
income cities and rising in the upper-middle income 
cities, and that the TGR gap between the two city types 
was narrowing. The Wilcoxon Test found that the TGR 
differences between the high-income and upper-middle 
income cities was insignificant at a 5% level from 2013 
to 2016; that is, the average TGR in the upper-middle 
income cities was slightly higher than in the high-income 
cities from 2013 to 2016.

Average efficiency indicators in the high income and upper 
middle‑income cities
Table  5 compares the average  CO2, AQI, energy con-
sumption, the average GDP, respiratory disease, mor-
tality rate and health expenditure efficiencies in the 
high-income and upper-middle income cities.

Except for 2015, the average  CO2 emissions and AQI 
were lower in the high-income cities than in the upper-
middle income cities. The average  CO2 emissions effi-
ciency in the high-income cities declined from 0.81 in 
2013 to 0.67 in 2016, and in the upper-middle income cit-
ies, first rose from 0.66 in 2013 to around 0.67 in 2015 
and then fell to 0.52 in 2016; therefore, the average  CO2 
emissions efficiencies between the city groups narrowed 
slightly in 2016. In general, however, the high-income 
cities needed to strengthen their  CO2 emissions man-
agement and consider coordinating their  CO2 and air 
pollutant emissions management.

The AQI efficiency in the high-income cities increased 
from 0.84 in 2013 to 0.97 in 2014, fell to 0.71 in 2015, 

then rebounded to 0.89 in 2016, and in the upper-middle 
income cities increased from 0.80 in 2013 to 0.94 in 2014, 
declined in 2015 to 0.67, and rebounded slightly to 0.80 
in 2016; therefore, the average AQI efficiency gap wid-
ened between the two city groups.

While the high-income cities had higher energy con-
sumption efficiency than the upper-middle income cities, 
this fluctuated down from around 0.89 in 2013 to around 
0.67 in 2016. The energy consumption efficiency in the 
upper-middle income cities also fluctuated down from 
0.65 in 2013 to around 0.52 in 2016. Therefore, improve-
ments were needed in both city groups. These results 
were similar to the empirical results in Li et  al. [29] in 
which it was found that the high-income cities had higher 
efficiencies than the upper-middle income cities.

The average health expenditure efficiencies in both city 
groups were low, with the average in the high-income 
cities being 0.49 and the average in the upper- middle 
income cities being 0.461. In 2014, the average health 
expenditure efficiency in the high-income cities rose 
to around 0.53, but in the upper-middle income cities 
fell slightly to below 0.46. In 2015, the health expendi-
ture efficiency in the high-income cities fell sharply to 
0.36 and in the upper-middle income city average health 
expenditure efficiency fell to 0.37. In 2016, both city 
groups had significant increases to around 0.45, with the 
upper-middle income cities being slightly higher than the 
high-income cities.

The average mortality rate efficiency gap between the 
two city groups also narrowed. The average mortality 
rate efficiency rose in the high-income cities from 0.81 
in 2013 to 0.84 in 2016, but dropped in the upper-middle 
income cities from around 0.88 in 2013 to 0.84 in 2016.

While the average healthcare expenditure efficiency 
in the high-income cities was slightly higher than in the 
upper-middle income cities, it was declining in both city 
groups, reaching its lowest in 2015. The average healthcare 
expenditure efficiencies in the high-income cities declined 

Table 5 Average indicator efficiencies in the high-income and upper-middle income cities

City 2013 2014

CO2 AQI Respiratory Energy Healthcare 
expenditure

CO2 AQI Respiratory Mortality Energy Healthcare 
expenditure

High‑income 0.814 0.837 0.801 0.788 0.491 0.741 0.972 0.884 0.875 0.760 0.530

Upper‑middle income 0.659 0.799 0.848 0.653 0.461 0.659 0.938 0.805 0.813 0.649 0.460

City 2015 2016

CO2 AQI Respiratory Energy Healthcare 
expenditure

CO2 AQI Respiratory Mortality Energy Healthcare 
expenditure

High‑income 0.793 0.716 0.866 0.793 0.356 0.665 0.882 0.840 0.869 0.665 0.451

Upper‑middle income 0.668 0.636 0.855 0.652 0.373 0.522 0.803 0.839 0.841 0.522 0.454
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faster over the 4 years, and by 2015 and 2016, was lower 
than in the upper-middle income cities; therefore, signifi-
cant improvements were needed across the board.

Average efficiency indicators by region
Table 6 shows the main annual average input and output 
indicator efficiencies in each region.

The highest regional average carbon dioxide emis-
sions efficiency in 2013 and 2014, was in the northeast 
region and the lowest was in the western region, and in 
2015 and 2016, the highest carbon dioxide emissions effi-
ciency was in the eastern region, and the lowest efficien-
cies were in the western and northeastern regions. From 
2013 to 2015, the annual average carbon dioxide emis-
sions efficiency in the western region was the lowest of all 
four regions, but in 2016, was only lower than the east-
ern region. Regardless, the average carbon dioxide emis-
sions efficiency in the western region was fluctuating and 
declining, and there was a great need for improvement.

The regional average AQI index efficiency in the eastern 
region was higher than in the other four regions, and in 
2013, 2014 and 2015, the AQI index efficiency was higher 
than the central and northeastern regions. Except for 2014, 
the average AQI index efficiency in the northeastern region 
was the lowest of the four regions and in 2015 was only 
0.387, and although there was a significant increase to 0.78 
in 2016, there was a great need for improvement. In the 
western region, the average AQI index efficiency in 2013 
was the highest of the four regions. It increased significantly 

in 2014 but was still slightly lower than the eastern region, 
and then began to decline significantly. Although it 
rebounded in 2016, it was lower than in the eastern and cen-
tral regions. The average AQI index efficiency in the central 
region was low in 2013 and 2015, was the lowest of the four 
regions in 2014, but was still high at 0.934, but in 2016 was 
higher than in the western and northeastern regions. Over-
all, the average AQI index efficiencies in the western and 
northeastern regions had a slight fluctuating upward trend.

The average annual respiratory diseases efficiency was 
the lowest in the northeastern region, and was only 0.524 
in 2016. The average respiratory diseases efficiencies in 
the eastern, central, and western regions, however, were 
relatively close.

The northeast region had the lowest average mortality 
rate efficiency, which except for 2014, was only around 
0.52 in the other 3 years. The average mortality rate effi-
ciency in the eastern region was the highest of the four 
regions in 2015 and 2016 at above 0.9, the western region 
had the highest average mortality rate efficiency in 2013 
and 2014 at above 0.85, and the average mortality rate 
efficiency in the central region ranked second in 3 years, 
but was ranked third in 2014.

The energy consumption efficiency was high in all 
regions. The energy consumption efficiency in the northeast 
region was the highest in 2013 and 2014, was slightly lower 
than the eastern region in 2015 and was lower than both the 
eastern and western regions in 2016. The average energy 
consumption efficiency in the western region from 2013 to 

Table 6 Average efficiencies from 2013–2016 by region

City CO2 AQI

2013 2014 2015 2016 2013 2014 2015 2016

East 0.784 0.761 0.816 0.796 0.867 0.976 0.81 0.917

Central 0.764 0.693 0.695 0.478 0.71 0.934 0.587 0.818

Northeast 0.821 0.787 0.793 0.457 0.577 0.948 0.387 0.783

West 0.642 0.621 0.645 0.499 0.885 0.946 0.671 0.798

City Respiratory Mortality

2013 2014 2015 2016 2013 2014 2015 201H

East 0.82 0.867 0.902 0.888 0.838 0.896 0.932 0.917

Central 0.856 0.799 0.957 0.853 0.872 0.745 0.929 0.87

Northeast 0.677 0.574 0.542 0.524 0.64 0.546 0.516 0.516

West 0.855 0.906 0.856 0.872 0.889 0.917 0.902 0.877

City Energy Healthcare expenditure

2013 2014 2015 2016 2013 2014 2015 2016

East 0.783 0.752 0.8 0.796 0.59 0.654 0.475 0.563

Central 0.698 0.696 0.687 0.453 0.356 0.292 0.247 0.374

Northeast 0.785 0.827 0.793 0.457 0.177 0.292 0.114 0.265

West 0.642 0.619 0.636 0.517 0.526 0.525 0.409 0.454
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2015 was the worst at below 0.65. In the eastern region, the 
energy consumption efficiency was slightly lower than in 
the northeast in 2013 and 2014 but was the highest in 2015 
and 2016. The energy consumption efficiency in the central 
region continued to decline and by 2016 was only 0.453; 
therefore, there was significant need for improvements.

The health expenditure efficiencies were low in all 
regions. The health expenditure efficiency in the eastern 
region was higher than in other regions but in 2016, was 
only 0.56. The health expenditure efficiency in the north-
east region was lower than 0.3 in all 4 years and only 0.27 
in 2016, and in the central region was only slightly higher. 
The health expenditure efficiency in the western region 
was slightly higher than that in the northeast and central 
regions, but in 2016, was only about 0.45.

Of the six above-mentioned indicators, the average health 
expenditure efficiencies in each region were the lowest, fol-
lowed by the energy consumption and carbon dioxide emis-
sions efficiencies. Therefore, future regional governance 
attention needs to be paid to health expenditure, energy 
consumption and carbon dioxide efficiency improvements.

The AQI index, respiratory disease, mortality, and 
energy consumption efficiencies in the northeastern 
region were the lowest of the four regions for most of the 
years; therefore, governance in these areas needs attention.

While the eastern region had higher AQI index, mor-
tality rate and health expenditure efficiencies than the 
other regions, the health expenditure efficiency needed 
significant improvements.

The average energy consumption efficiency in the 
western region was low and while the health expendi-
ture ranked second to the eastern region, governance 
improvements are still needed.

Discussion
Using a modified two stage Undesirable Meta Dynamic 
Network model, this study jointly analyzed energy con-
sumption, economic growth, air pollution and health 
treatment expenditure data from 31 Chinese high-income 
and upper-middle income cities from 2013 to 2016, from 
which the following conclusions were made found:

(i) The high-income cities had higher average efficien-
cies than the upper-middle income cities. Of the 10 east-
ern region high-income cities, Guangzhou and Shanghai 
had average efficiencies of 1, with the least efficient being 
Shijiazhuang. In the other regions, the upper-middle 
income cities required greater technology and health 
treatment investments. These results indicated that the 
environmental and health expenditure efficiencies of the 
more economically developed regions were significantly 
higher than in the less developed regions. Economi-
cally developed areas are mainly located in the eastern 
coastal areas of China, most of which have relatively good 

weather conditions and the economic capacity to support 
healthy investment and development.

(ii) Guangzhou, Lhasa, Nanning, and Shanghai had 
production stage efficiencies of 1, and Guangzhou, Lhasa, 
Nanning, Shanghai and Fuzhou had healthcare resource 
utilization stage efficiencies of 1. The average produc-
tion stage efficiencies in most cities were higher than the 
healthcare resource utilization stage efficiencies; there-
fore, greater efforts are needed to improve the healthcare 
resource utilization efficiencies. Guangzhou and Shang-
hai were the most economically developed cities in China 
in terms of economic strength and social development 
and achieved the best production and environmental effi-
ciencies. Lhasa, which is is dominated by tourism, has a 
sparse population, and few high-polluting industries, had 
good environmental production stage and health effi-
ciencies. Fuzhou, which is located in the coastal area of 
southeastern China, has good diffusion conditions and a 
high economic level, had the most efficient production, 
environmental and health input efficiencies.

(iii) The technology gap ratios (TGRs) in the high-
income cities were slightly higher than in the upper-mid-
dle income cities, indicating that the high-income cities 
had slightly higher technological levels. Therefore, the 
upper-middle income cities need to learn from the high-
income cities to improve their general TGR.

(iv) While the high-income cities had higher energy con-
sumption efficiencies than the upper-middle income cities, 
this was decreasing in most cities. There were insignifi-
cant respiratory disease efficiency differences between the 
high-income and upper-middle income cities; however, 
the high-income cities had decreasing mortality rate effi-
ciencies while the upper-middle income cities had increas-
ing mortality rate efficiencies. Overall, most cities needed 
to strengthen their health governance to ensure balanced 
economic growth and urban expansion.

(v) The average AQI efficiencies in both the high-
income and upper-middle income cities were higher than 
the average  CO2 efficiencies. However, the high-income 
cities had lower average  CO2 emissions and AQI index 
efficiencies than the upper-middle income cities, and the 
AQI efficiency differences between the two city groups 
was expanding. As most cities were focusing on air pol-
lution controls rather than carbon dioxide emissions 
controls, greater efforts are needed to coordinate the air 
pollution and carbon dioxide emissions treatments.

In summary, climate change, economic growth and 
social development all pose great challenges to devel-
opment. Therefore, to effectively respond to these chal-
lenges and problems, governments need to actively 
adapt measures to local conditions, develop scientific 
governance systems, and formulate short, medium- and 
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long-term dynamic strategic management directions. 
Therefore, the following policy suggestions are given.

(1) Hospital and medical system reform is needed and 
a wide-ranging medical management system developed 
that has local medical systems based on regional charac-
teristics and local disease characteristics to ensure a com-
plete governance system from prevention to emergency 
response to supervision to security. For example, for 
areas that need to deal with the air pollutant discharges 
such as Zhengzhou, the focus should be on strengthen-
ing investment in the prevention and treatment of the 
diseases caused by air pollution and especially by  PM2.5. 
Investment should also be strengthened in labor and the 
materials to ensure active prevention, active response 
and effective supervision and control.

(2) Local governments need to strengthen awareness 
in adolescents and residents about the health problems 
and diseases caused by air pollution. There is a large 
local education gap in China, with the high-income cit-
ies generally having better education than the upper-
middle income cities; therefore, the education and policy 
promotions in the upper middle-income cities needs to 
be improved. Due to regional differences, different cities 
need to take different measures.

(3) High-income cities need to take action based 
on their specific problems and challenges. Overall, 
healthcare governance requires medium and long-
term response measures and coordinated governance 
responses to reduce the incidence of respiratory diseases 
and the associated mortality.

(4) Of the 17 upper-middle income cities, Hangzhou, 
Changchun, Harbin, Chengdu, Guiyang, Kunming and 
Xi’an need to prioritize healthcare governance efficiency 
by establishing sound medical management systems 
and emergency environmental pollution treatments. For 
example, while Hangzhou is a coastal city that is condu-
cive to the discharge of harmful air pollutants, industrial 
environmental pollution has adversely affected resident 
health. Therefore, the city needs to put more emphasis on 
healthcare treatment and air pollution treatment invest-
ments. Chengdu is in a basin surrounded by mountains, 
which is not conducive to the discharge of air pollutants; 
therefore, medical monitoring should be prioritized, and 
in addition to strengthening medical monitoring govern-
ance in Kunming, the treatment of carbon dioxide emis-
sions should take precedence over the treatment of air 
pollutants.

(5) As high-income cities have more advanced tech-
nologies and fewer polluting industries, the  CO2 and AQI 
emissions treatments have achieved some good results. 
However, upper-middle income cities such as Lanzhou, 

Taiyuan and Shijiazhuang, all of which have high energy 
consumption and high polluting industry structures, 
need to focus on reducing their  CO2 and AQI emissions. 
Therefore, the local governments need to adapt the treat-
ment controls to local conditions and design medium to 
long-term development strategies.

(6) Upper-middle income cities need to actively learn 
from the technology governance experiences in the more 
efficient higher-income cities. Based on their city’s eco-
nomic development stage, economic resources and indus-
try structures, local and regional governments need to 
develop health governance models that meet their own 
characteristics, and when reforming their current medical 
systems, high-income cities could learn from countries that 
have good medical systems such as Japan and the United 
Kingdom. For example, special attention should be given 
to developing and employing competent medical workers. 
Education programs for adolescents and residents about 
the health problems linked to air pollution could help them 
take environmental protection action

Conclusion
This study used DEA to determine the input and output 
improvements needed in 31 Chinese cities and to pro-
pose corresponding policy recommendations. Climate 
change, economic growth and social development all 
pose great challenges to human development. Therefore, 
to effectively respond to these challenges and problems, 
the government needs to actively adapt measures to local 
conditions, develop scientific governance systems, and 
formulate short, medium- and long-term dynamic strate-
gic management directions. All regions should take active 
measures based on local meteorological conditions, geo-
logical characteristics, resource endowments and popula-
tion characteristics to improve their energy consumption, 
economic, environmental and health efficiencies.

As the sample data were obtained from publicly released 
Chinese government data, the data used in this research 
were the latest available. Therefore, future research could 
continue to track the air pollution, economic growth and 
health governance efficiencies based on updated data and 
provide the central and local governments with more 
timely and effective policy recommendations and man-
agement decision-making references.
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Appendices
Appendix 1
See Table 7.

Table 7 Overall efficiency by city and region from 2013–2016

DMU Cities by income Region 2013 2014 2015 2016 Average

Beijing High‑income city East 1.000 0.951 0.528 0.502 0.745

Fuzhou High‑income city East 0.892 0.823 0.803 0.809 0.832

Guangzhou High‑income city East 1.000 1.000 1.000 1.000 1.000

Hangzhou High‑income city East 0.460 0.569 0.465 0.472 0.492

Haikou Upper‑middle income city East 0.813 0.767 0.758 0.757 0.774

Jinan High‑income city East 0.368 0.414 0.373 1.000 0.539

Nanjing High‑income city East 0.463 0.620 0.504 0.510 0.524

Shanghai High‑income city East 1.000 1.000 1.000 1.000 1.000

Shijiazhuang Upper‑middle income city East 0.258 0.279 0.230 0.212 0.245

Tianjin High‑income city East 0.399 0.474 0.406 0.392 0.418

Changchun Upper‑middle income city Northeast 0.470 0.498 0.444 0.358 0.442

Harbin Upper‑middle income city Northeast 0.429 0.462 0.422 0.329 0.411

Shenyang High‑income city Northeast 0.386 0.480 0.361 0.457 0.421

Changsha High‑income city Central 0.479 0.675 0.560 0.649 0.591

Hefei Upper‑middle income city Central 0.434 0.468 0.492 0.880 0.568

Nanchang High‑income city Central 0.510 0.516 0.460 0.351 0.459

Taiyuan Upper‑middle income city Central 0.354 0.193 0.295 0.317 0.290

Wuhan High‑income city Central 0.917 0.541 0.465 0.399 0.581

Zhengzhou High‑income city Central 0.515 0.531 0.517 0.416 0.495

Chengdu Upper‑middle income city West 0.369 0.414 0.375 0.339 0.374

Chongqing Upper‑middle income city West 0.278 0.336 0.279 0.518 0.352

Guiyang Upper‑middle income city West 0.323 0.341 0.315 0.292 0.318

Huhehot High‑income city West 0.457 0.586 0.470 0.441 0.489

Kunming Upper‑middle income city West 0.390 0.386 0.332 0.293 0.350

Lanzhou Upper‑middle income city West 0.421 0.391 0.270 0.379 0.365

Lhasa Upper‑middle income city West 1.000 1.000 1.000 1.000 1.000

Nanning Upper‑middle income city West 1.000 1.000 1.000 0.681 0.920

Urumqi Upper‑middle income city West 0.912 0.923 0.680 0.823 0.835

Xian Upper‑middle income city West 0.393 0.413 0.360 0.314 0.370

Xining Upper‑middle income city West 0.347 0.386 0.320 0.289 0.336

Yinchuan Upper‑middle income city West 0.690 0.574 0.464 0.568 0.574



Page 18 of 19Li et al. Cost Eff Resour Alloc           (2020) 18:32 

Appendix 2
See Table 8.
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